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 Throughout history, there are many examples of 
brilliant mathematicians who changed the world with 
new and astounding theories.  Many challenged the 
common notions of their time, proposing new ways 
of conceiving shapes, numbers, and relationships.  In 
his Elements, written around 300 BC, Euclid 
discarded the belief that visual representations could 
justify a hypothesis, and insisted on an axiomatic 
system of logical proofs.  In 225 BC, Archimedes had 
the insight to realize that he could, in theory, 
construct a polygon whose area was arbitrarily close 
to that of a given circle. Over 1800 years later, this 
notion of arbitrarily or infinitely close was utilized by 
Leibniz and Newton in the creation of Calculus, a 
development that changed all sciences forever.  
Following this long line of innovators we come to a 
man named Cantor, whose theory of infinite sets was 
so groundbreaking that it has been dubbed “one of 
the most disturbingly original contributions to 
mathematics in 2500 years” (Burton, 625). 
 Georg Ferdinand Ludwig Phillip Cantor was born 
on March 3, 1845, in St. Petersburg, Russia.  Many of 
his relatives were artists or musicians, thus from an 
early age Cantor was surrounded by an environment 
that fostered his incredible genius and creativity.  
Both of his parents may originally have been Jewish, 
but his father later converted to Protestantism and his 
mother to Catholicism (Maor, 54).  This rich 
religious background led the young Cantor to develop 
a deep interest in theology, especially in questions 
concerning the nature of the infinite. 
 His father wanted him to study engineering, as 
this would be much more profitable than 
mathematics, so in 1862 Cantor started at a university 
in Zurich, Germany.  After one semester he had had 
enough of this mundane science, and his father 
finally agreed to let him study mathematics.  Cantor 
then transferred his studies to the University of 
Berlin, where he was fortunate enough to study under 
Weierstrass, Kummer, and (less fortunately) 
Kronecker.  In 1867, at the age of only 22, he 
received his PhD for a thesis on number theory, and 
accepted an appointment at Halle University in 1869. 

 Intrigued by Weierstrass’ groundbreaking and 
rigorous analysis, Cantor wrote a series of papers on 
representations of functions as trigonometric series.  
It was these papers that led him quite unexpectedly to 
the study of sets of points on the real line.  This topic 
quickly revealed itself to be much more complex than 
it originally seemed, and Cantor decided to begin a 
complete investigation into the intricate workings of 
sets, both finite and infinite.  His next paper, Über 
eine Eigenshaft des Inbegriffes aller reellen 
algebraischen Zahlen (On a Property of the System 
of all the Real Algebraic Numbers), marked the birth 
of Set Theory (Burton, 625). 
 It is important here to discuss the concept of the 
infinite up until Cantor’s time.  Mathematicians felt 
that there were two types of infinities, the potentially 
infinite and the actual infinite.  Of these, only the 
former was acknowledged as something that could be 
used in mathematics.  The potentially infinite referred 
to a process which could be repeated over and over, 
but which at any given step was still finite.  The idea 
of the potentially infinite can be seen in the concepts 
of limits and mathematical induction.  The actual 
infinite, on the other hand, was strictly forbidden.  
Even the legendary Gauss expressed this view in an 
1831 letter to Schumacher: “As to your proof, I must 
protest most vehemently against your use of the 
infinite as something consummated, as this is never 
permitted in mathematics.  The infinite is but a figure 
of speech” (quoted in Burton, 628).  Cantor could not 
accept this idea.  In his mind, there were clearly sets, 
or aggregates, which were infinite.  This entirely new 
concept required the deep investigative powers of 
Cantor’s genius, and we now turn our attention to 
some of his specific results. 
 We begin with a definition: “By an ‘aggregate’ 
we are to understand any collection into a whole M 
of definite and separate objects m of our intuition or 
our thought” (Cantor, 85)1.  Of fundamental 
importance was the ability to compare the sizes of 
                                                
1 This definition, and several others in this paper, are given in Cantor’s 
original (translated) wording.  Although they seem quite esoteric, it is 
interesting to see the original work.  Note that in the majority of the 
paper we use the modern terms “set” and “cardinality,” instead of 
Cantor’s “aggregate” and “power.” 



two sets.  At first, it seems that we can simply count 
the elements of each set and compare these numbers.  
This works for finite sets, but what about those pesky 
infinites?  Cantor had the burst of insight to realize 
the relative size of two sets could be discerned by 
establishing a correspondence between their 
elements.  In his words, “We say that two aggregates 
M and N are ‘equivalent,’ in signs M~N or N~M, if it 
is possible to put them, by some law, in such a 
relation to one another that to every element of each 
one of them corresponds one and only one element of 
the other” (Cantor, 86).  Today, we understand the 
“law” to be a function that is both one-to-one and 
onto, that is, a bijection.  We then see that two sets M 
and N are equivalent if there exists a bijection f: 
M!N (note that, since f is a bijection and thus has 
an inverse, the order N!M or M!N is irrelevant).  
With a little consideration, we see that this notion of 
equivalence is quite sufficient; it makes perfect sense 
that two sets are equal in size if we can match up 
their elements. 
 Now we can actually use this definition to see 
what it means to be able to count something.  We can 
easily count the elements of any finite set.  For 
example, consider the set {a,b,c,d}.  We see that 
there are four elements, but how did we arrive at this 
conclusion?  Clearly, we can just start with the first 
element and count 1, 2, 3, 4.  What we have actually 
done is exhibited the bijection f:{a,b,c,d}!{1,2,3,4} 
given by f(a)=1, f(b)=2, f(c)=3, and f(d)=4.  Since it 
is the set N={1,2,3,…} of natural numbers that we 
use to count, we can extend the concept of counting 
to infinite sets with the following definitions2.  

(1) A set S is said to be denumerable if there 
exists  a bijection f: N!S. 

(2) A set S is said to be countable if it is either          
    finite or denumerable. 
(3) A set S is said to be uncountable if it is not  
   countable. 

Thus, the set N is fundamental to our understanding 
of infinite sets.  We can also think of a set as being 
denumerable if we can list all of its elements, since 
the very act of creating the list involves placing one 
element 1st, one 2nd, and so on.  With this in mind, 

                                                
2 From here on we use N to be the set of natural numbers, which should 
not be confused with the general set N which Cantor used in his 
definitions. 

Cantor set out to determine which sets were 
denumerable. 
 We immediately see that N is denumerable by the 
trivial bijection f: N!N given by f(n)=n.  
Significantly more interesting is the fact that the set 
E+ of all positive even numbers is denumerable, as is 
shown by f(n)=2n.  We have just proved that E+~N, 
but E+ is clearly a proper subset of N!  Is this a 
contradiction?  It definitely goes directly against 
Euclid’s fifth common notion from Elements: “The 
whole is greater than the part.”  Indeed, when Galileo 
discovered that “there are as many squares as there 
are numbers because they are just as numerous as 
their roots,” he thought that something was seriously 
wrong (quoted in Burton, 627).  Similar “paradoxes” 
were discovered by Bolzano in the early 1800s, but it 
was Cantor’s close friend, the famous mathematician 
Richard Dedekind who, in 1888, not only accepted 
this sort of relationship, but formalized it with a 
definition: “A set M is infinite if it is equivalent to a 
proper subset of itself; in the contrary case, M is 
finite.”  This definition of an infinite set was quite a 
contrast to the common practice of saying that 
something was infinite if it was not finite.  This 
concept, however revolutionary, is tame compared to 
many of the other remarkable results of Cantor’s 
theory. 
 It is easy to show that the odd numbers, the 
squares, and many other subsets of N are also 
denumerable, but what about the set Z of all integers?  
This set should have at least twice as many elements 
as N, right?  Not even close.  We normally think of 
the integers as the set {…,-2,-1,0,1,2,…}, but there is 
nothing to stop us from listing them as {0,1,-1,2,-
2,3,-3,…}.  What we have done here is listed the 
integers according to the bijection f: N!Z defined 
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is denumerable.  Finally, it can be proved that every 
subset of a countable set is countable, as the 
examples above illustrate.  None of these results have 
been too surprising by today’s standards; all of the 
sets considered involve only integers. 
 One might now wonder if the only denumerable 
sets are those consisting solely of integers.  For 
example, we know the set Q of rational numbers is 



dense3, so how could we possibly list all of its 
elements?  Remarkably, Cantor showed that this is 
indeed possible, but as Fermat would say the proof is 
too lengthy to include here.  With similar proofs, he 
showed that NxN is denumerable, and even that a 
denumerable union of denumerable sets is 
denumerable. 
 Now it begins to seem that we have so many 
tricks up our sleeves that we can match up any two 
infinite sets.  Surely if even the rationals are 
denumerable, we must wonder what is not.  Cantor 
must also have wondered this, and his investigation 
into this matter brings us to a truly great theorem: 
The set R of real numbers is uncountable.  Two 
proofs of this were given by Cantor, the most well 
known being his famous “diagonal proof.”  We wish 
to present the first proof, given in his 1874 
publication, which requires a preliminary definition 
and theorem given in the appendix. 

Theorem: The set R of real numbers is 
    uncountable. 
Proof:  It suffices to show that the interval I=(0,1) 
is uncountable, for if R were countable then the 
subset I would be countable by a previous result. 
If, to the contrary, we assume that I=(0,1) is 
countable, we can list the elements of I as I={x1, 
x2, x3, . . .}.  First, select a closed subinterval I1 of 
I such that x1!I1. Next, select a closed subinterval 
I2 of I1 such that x2!I2.  Continuing in this 
fashion, we obtain a nested sequence of closed, 
bounded intervals ......
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we have produced an element of I that is not on 
our list, which contradicts that we had listed all 
the elements of I.  Hence, (0,1), and therefore R, 
are uncountable.  QED 
 

An immediate consequence of this theorem is that the 
set R-Q of all irrational numbers is uncountable, for if 
R-Q were countable then (R-Q)U (Q)=R would be 

                                                
3 A rational number is simply a fraction.  To say that Q is dense 
means that between any two real numbers there lies a rational 
number. 

countable.  Consequently, there are infinitely many 
more irrationals than rationals. 
 We have now confirmed that uncountable sets 
exist, and thus that there are different “sizes” of 
infinity.  Considering this, we would like some way 
of ordering these sizes, and for this we would like to 
have symbols representing each size.  Cantor of 
course realized this, and gave the following 
definition:  “We will call by the name ‘power’ or 
‘cardinal number’ of M the general concept which, 
by means of our active faculty of thought, arises from 
the aggregate M when we make abstraction of the 
nature of its various elements m and of the order in 
which they are given” (Cantor, 86).  Upon 
deciphering this into English, we realize that the 
cardinal number of a set is what we know about the 
set if we do not consider what its elements are: the 
only thing we can see in this case is its size.  Thus, 
the cardinality of a set represents how large it is.  The 
notation used for the cardinal number of a set S is .S   
A very important remark is that, for sets A and B, 

.~ BABA !=   As a standard basis from which to 

work, Cantor defined .
0
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4 Full details 

on comparing the sizes of sets by ordering the 
cardinals are given in the appendix, but for now we 
will accept c<!

0
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 We now must ask if there exist cardinals greater 
than c.  That is, are there sets that are even bigger 
than R?  Cantor was sure that there must be, and also 
thought that he knew exactly where to find one: the 
real plane.  Specifically, he reasoned that there must 
be more points in the unit square than in the unit 
interval.  After many fruitless attempts to prove this, 
in 1877 he finally ended up proving just the opposite: 
the unit square is equivalent to the unit interval!  
Thus, there are just as many points in the two 
dimensional plane as on the one dimensional line!  
This completely unexpected result prompted a letter 
from Cantor to Dedekind, exclaiming “I see it but I 
do not believe it” (quoted. in Dunham, 273).  In fact, 

it was later proven that .NncR
n !"=  

                                                
4 Considering the domain (0,1), the functions  f(x)=(b-a)x + a   and   
f(x)=tan(πx-π/2) show that, for any interval (a,b) of real numbers, we 

have (a,b)~(0,1)~R, and thus .)1,0(),( cRba ===  



 Where, then, can we find a more abundant set 
than R?  Still convinced that such sets must exist, 
Cantor persevered and was finally rewarded with the 
theorem that today bears his name. 
 Cantor’s Theorem: If A is any set, then 

.)(APA <
5 

Proof:  We begin by showing that P(A) is at least 
as large as A, and then show by contradiction that 
P(A) is not equivalent to A. 
First, consider f: A!P(A) given by f(a)={a}.  
This function maps all of the elements of A to 
some of the elements of P(A) (it is 1-1), so P(A) 
must be at least as large as A.  Thus, .)(APA !  

Now, assume .)(APA =   Then we have A~P(A).  
By definition, this means there exists a bijection 
g: A!P(A).  Now we consider the set B={a!A: 
a!g(a)}.  B is clearly a subset of A, and so 
B!P(A).  Hence, since g is a bijection, there must 
be some x!A such that g(x)=B.  We now ask 
whether or not x is an element of B.  There are 
two cases:  

Case 1: Assume x!B. 
Then by definition of B, we have 
x!g(x).  But g(x)=B, so x!B, which 
contradicts our assumption.  Thus, this 
case is impossible. 

Case 2: Assume x!B. 
Then by definition of B, we have 
x!g(x).  But g(x)=B, so x!B, which 
contradicts our assumption.  Thus, this 
case is also impossible. 

Since both cases lead to contradictions, we are 
forced to conclude that our initial assumption was 
false.  That is, .)(APA !  

Hence, we have )(APA !  and  .)(APA !   

Therefore, .)(APA <  
QED 
 

 So: the set P(R) is larger than R, but this theorem 
actually goes far beyond finding a set with greater 
cardinality than R.  Since, for any set A, P(A) is itself 
a set, we can construct P[P(A)], and P[P[P(A)]], and 
so on.  We then obtain the following sequence: 

                                                
5 P(A) is the set of all subsets of A, and is called the power set of A. 

 ....)))((())(()(0 <<<<<! RPPPRPPRPc   Thus, 
we have a profound truth: there is an infinite 
hierarchy of infinities. 
 To us, Cantor’s theory seems amazing.  It is a 
beautiful example of mathematical ingenuity at its 
best, and “has been called the first truly original 
mathematics since the Greeks” (Dunham, 280).  
Unfortunately, in Cantor’s time it was nothing short 
of blasphemy.  Outraged at his use of the actual 
infinite, and even more at the transfinite arithmetic he 
created in his 1895 Contributions to the Founding of 
the Theory of Transfinite Numbers, the mathematical 
community erupted into one of the most bitter 
disputes in history.  Most wounding to Cantor were 
the attacks of one of his former teachers, Leopold 
Kronecker. 
 Kronecker was undoubtedly a great 
mathematician, but also an ultraconservative one.  He 
believed that any math not constructible from the 
natural numbers alone was ridiculous, and 
particularly disliked Weierstrass’ Analysis.  He once 
brought his esteemed colleague to tears with a 
comment concerning “the incorrectness of all these 
conclusions used in the so-called present method of 
analysis” (Burton, 631).  If Kronecker could not 
handle ε’s and δ’s, one can imagine his feelings 
towards Cantor’s infinities. 
 As a justification for his use of the actual infinite, 
Cantor once argued “to deny the actual infinite means 
to deny the existence of irrational numbers” (Maor, 
55).  Unfortunately, this is exactly what Kronecker 
did, apparently preferring the state of mathematics in 
the time of Pythagoras over that of the 19th century.  
Kronecker’s extreme distaste for the new Set Theory 
seemed to devolve into a personal hatred of Cantor 
himself, and affected much of our genius’ life.  
Cantor always wanted to get an appointment at a 
more prestigious university, but Kronecker, as a 
senior professor at the University of Berlin, made this 
impossible.  He even went so far as to block many of 
Cantor’s articles from being published in all but the 
smallest journals.  It should be noted that Cantor did 
have some supporters at the time, most notably 
Weierstrass, Dedekind, and David Hilbert, but 
Kronecker’s opposition was just too strong. 
 All of these personal attacks, along with the stress 
of his great mathematics (particularly his attempts to 



prove the continuum hypothesis), had a devastating 
effect on Cantor6.  In 1884 he had his first nervous 
breakdown, and was committed to a psychiatric clinic 
in Halle.  After a short time he was released, and 
went on developing his theory.  He was again in fine 
form in 1888, and after years of defending his work 
remarked “My theory stands as firm as a rock; every 
arrow directed against it will return quickly to its 
archer” (Dunham, 283).  Tragically, in 1899 the death 
of his son Rudolph initiated another descent.  Cantor 
was forced back to the psychiatric clinic in 1902, 
1904, 1907, and 1911, and finally retired from Halle 
University in 1913.  By this time his theories were 
beginning to gain much more widespread acceptance, 
but the damage had been done, and Cantor died in the 
clinic on January 6, 1918 (Dunham, 279). 
 This was indeed a tragic end to one of the most 
brilliant men the world has ever known, but his ideas 
live  on,  continuing  to  amaze and  inspire  countless 
mathematicians.  Particularly, the great German 
mathematician David Hilbert would not allow 
Cantor’s theory to die.  He regarded this new field as 
“the finest product of mathematical genius and one of 
the supreme achievements of purely intellectual 
human activity” (quoted in Burton, 629).  Hilbert also 
defended the Set Theory from future attackers, 
insisting “no one will expel us from the paradise that 
Cantor has created” (quoted in Dunham, 281).  
Clearly, Cantor left a great treasure for all future 
generations of mathematicians. 
 We conclude with a statement by Cantor himself, 
who never for a moment doubted the truth of his 
revolutionary mathematics: 
 

This view, which I consider to be the sole 
correct one, is held by only a few.  While 
possibly I am the very first in history to take 
this position so explicitly, with all of its logical 
consequences, I know for sure that I shall not 
be the last! (quoted in Dunham, 280) 
 
 

                                                
6 Modern psychiatric analysis also shows that he may have been 
bipolar (Dunham, 279). 

Bibliography 

Bartle, Robert G., and Donald R. Sherbert.  
Introduction to Real Analysis.  3rd ed.  New York: 
John Wiley and Sons, Inc., 2000. 

 

Burton, David M.  The History of Mathematics: An 
Introduction.  5th ed.  New York: McGraw-Hill 
Companies, Inc., 2003. 

 

Cantor, Georg.  Contributions to the Founding of the 
Theory of Transfinite Numbers.  Trans. Philip E.B. 
Jourdain.  La Salle: The Open Court Publishing 
Company, 1952. 

 

Dunham, William.  Journey through Genius: The 
Great Theorems of Mathematics.  New York: 
Penguin Books Ltd, 1991. 

 

Eggen, Maurice, Douglas Smith, and Richard St. 
Andre.  A Transition to Advanced Mathematics.  
5th ed.  Pacific Grove: Brooks/Cole, 2001. 

 

Maor, Eli.  To Infinity and Beyond: A Cultural History 
of the Infinite.  Princeton: Princeton UP, 1991. 



 
 
 
 
 
 

 
Appendix 
 

 
Preliminaries for Cantor’s Proof that R  is Uncountable 
 
Definition:  A sequence of intervals NnI

n
!, , is nested if the following 

chain of inclusions holds: ......
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Theorem (Nested Intervals Property):  If ,, NnI

n
!  is a nested sequence 

of closed bounded intervals, then there exists a number R!"  such that 
.NnI

n
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The Ordering of Cardinal Numbers 

Definitions:  Let A and B be sets. 

(1) .;~ BAotherwiseBAiffBA !=  

(2) .:)11( BAfinjectionanexiststhereiffBA !"#  

(3) .BAandBAiffBA !"<  

Remarks:  
 

(i) On the set of cardinal numbers, it can be shown that the above relation !  
is reflexive, transitive, and antisymmetric, and that for any two elements x 
and y either x! y or y! x.  Thus, it is a total order on the set of cardinal 
numbers.  If we accept the generalized continuum hypothesis, then !  is also 
a well ordering on the set of cardinal numbers. 
 

(ii) Many of the familiar properties of !  on the real numbers, such as x!  y 
iff x<y or x=y, can be shown to carry over to the cardinal numbers.



 


