COURSE PREREQUISITES
C- or above in all of the following courses: BIOL 1050, BIOL 1150, CHEM 1100, CHEM 1110, or transferred equivalents.

COURSE DESCRIPTION
Introductory Genetics is a required course for all biology majors. This is an upper-division science course and it is expected that you have a strong grasp of the material covered in the pre-requisite courses. In this course we explore the three branches of genetics: Mendelian genetics (also called classical or inheritance genetics), molecular genetics (DNA replication, transcription and translation), and molecular biotechnology (molecular markers, gene cloning, DNA fingerprinting).

There is a substantial amount of information to be mastered in this course. To do well, one must devote the necessary time and effort. Experience indicates that to be successful, a minimum of 12 hours of effort is needed outside of class. If you are not prepared to dedicate the time and effort needed for this course, you should reconsider your enrollment.

REQUIRED TEXTS/MATERIALS
  You are allowed to purchase the loose leaf rather than a hardbound text.
- Mastering Genetics 12th ed. access (bundled with text at bookstore...otherwise purchase access online)
- A package of 3” x 5” index cards to use for in-class writing and drawing exercises

CENSUS DATE
Students must attend the first three class sessions or they will be dropped from the course.
This course can only be taken for a letter grade. Students can drop the course prior to the census date of September 19. After this date, a student cannot withdraw without an appeals process documenting extraordinary circumstances.

PERSONAL INTEGRITY AND CLASSROOM BEHAVIOR
It is assumed that you have read and understood the university’s position on academic integrity and student discipline.
Cheating and plagiarism will be dealt with as severely as university and state regulations allow. This includes receiving an F in the course, and being reported to University Judicial Affairs.
Do not text in my class. It is rude. Use of laptops is forbidden; take notes by hand. You may record the lecture.

GRADING
Grades are determined by the points you earn during the course. I reserve the right to use +/- grades, rather than whole letter grades. Although your scores will be archived on Canvas, I expect you to keep all graded materials for the duration of the term.

| Quiz 1 | 125 points |
| Quiz 2 | 125 points |
| Quiz 3 | 125 points |
| Quiz 4 | 125 points |
| Cumulative Final Exam | 300 points |
| Mastering Genetics online homework | 180 points |
| Special assignment: CRISPR, The Discovery of Bacterial Adaptive Immunity | 20 points |
| Total | 1000 points |
QUIZZES AND FINAL EXAM
The quizzes and the final exam will be given in a multiple choice format. Quiz questions will be based on material from all lectures since the previous quiz. The final exam is cumulative. I do not recycle exam questions.

Students who arrive after the first exam of the day has been turned in will not be allowed to take the exam. If you must leave the room for personal reasons, you will not be allowed to finish the in-class exam. Your partially finished exam will be graded as it stands. If you miss an exam for any reason, you must take an alternate exam before the in-class exam is scheduled to take place. If you miss an exam unexpectedly, and do not have documentation of a legitimate reason for doing so, you will not be allowed to take the alternate exam, and you will receive a 0 grade for the missed exam.

Exam answers will be recorded on Scantron 882-E forms. Erase thoroughly...if the machine reads your erased answer as incorrect, the automatic score is the grade I record.

MASTERING GENETICS
There will be multiple online homework assignments, corresponding to the chapters we will cover in the course. Assignments are posted in advance of covering the material in lecture. Assignments usually take 3-4 hours to finish, but each answer is submitted individually so you can do assignments in chunks. All homework assignments are due by midnight, the day before the final exam.

If you experience technical difficulties while submitting an answer to a particular homework question, click the “Contact Publisher” link above the question within the assignment.

Students who register after the first homework assignments are due may not make up those missed assignments. To register for Mastering Genetics visit the website http://www.masteringgenetics.com/

Click the “STUDENTS” button under the register option. You will be asked for a student access code. This is a printed code supplied inside the Mastering Genetics Student Access Kit, which was included with the purchase of your new textbook. If you bought your textbook used, then there is an option for you to purchase an access code online during the registration process, typically cheaper than the campus bookstore (note: you do NOT need to buy access to Virtual Labs).

In Mastering Genetics, the name of this course is CSUSTAN BIOL 3350 FALL 2018 Cooper. To register for this course, enter the code MGENCOOPER01395.

COURSE OBJECTIVES
Students who successfully complete this course will:

- Examine the scientific method as it relates to evaluating evidence and drawing logical conclusions.
- Examine fundamental genetic principles and the structural levels of genetic organization and evolution.
- Investigate the chemical basis of life with emphasis on structure and function of nucleic acids.
- Understand the cell cycle and how it relates to mitosis and meiosis, Mendelian transmission genetics and extensions of the basic Mendelian model.
- Investigate chromosome mapping in prokaryotes and eukaryotes.
- Describe the process of DNA replication, transcription and translation, and the various levels of mutation (chromosomal, nucleic acid, epigenetic).
- Understand gene expression in eukaryotes, especially during development and in oncogenesis.
- Explore the many fields of and methodologies of biotechnology, including gene cloning, DNA fingerprinting, stem cell research, genomics and bioinformatics, and genetic engineering.
- Explore the genetic foundations of behavior, population structure and evolution.
STUDY RECIPE (FOR STUDYING ALONE)

This course has a reputation for being challenging, because some students are new to university-level biology. Students often complain that they study “all the time” but that their hard work doesn’t pay off in good grades. This is often because their study strategy simply needs tweaking. I have developed the perfect recipe for studying, based on our current understanding of the neurophysiology of learning and long-term memory formation. Using the recipe I provide below, you will maximize the benefit gained from each single minute of study time. If you also study the number of hours I recommend (15 hours outside of class [20 in summer semester]) then you will enhance your chances of earning the grade you want.

For each day’s lecture notes, you should do 4 “drive-bys” of the information. Your study environment should be isolated from external noise and distraction (no TV, no music, no kids, no throwing the ball for your dog).

1. **Take detailed notes in lecture.** Don’t try to write every single word on the slide; instead, **listen to what I am saying** and write abbreviated summaries and main ideas based on what comes out of my mouth.

2. **DRIVE-BY 1 (LEARNING AND REFLECTION):** This study session is for **learning and understanding** the material I introduced in lecture, using **thinking and reflection**.
   - This study session should be accomplished the same day as the lecture (ie. don’t have a sleeping period in between the lecture and the study session).
   - It should last a minimum of 1 hour, but will probably take 2-3 hours.
   - In the first 15 minutes, read through the notes and remind yourself of the general topic.
   - The remaining time should be spent in carefully reviewing each slide in turn, with your textbook open to the pages covering that material.
   - Read about every concept or process in the notes, and then read about it in the textbook. **Use your own words to describe concepts and processes.** When you do this, you are stimulating the language centers in the brain, which seem to be evolutionarily linked to learning in humans.
   - Think about the examples provided, and see if you can think of other examples.
   - Try to draw relevant images or flowcharts of processes.
   - Don’t stop until you have completed processing every slide of that day’s lecture notes.

3. **DRIVE-BY 2 (CONSOLIDATION):** This study session is for **consolidating your understanding** of the lecture material, and forming a clear connection in your mind between concepts, processes, and structures.
   - This study session should be accomplished the day following the lecture.
   - It should last a minimum of 1 hour. You will not use your textbook for this session, except to clarify your understanding of a particular fact.
   - In the first 15 minutes, review the notes and remind yourself of what you learned the day before.
   - Return to the first topic, cover the notes with a sheet of paper, and write down what you can remember (definitions, concepts, drawings). **You must use your own words to describe concepts and processes,** writing as much as you can possibly squeeze out of your memory. Don’t cheat by glancing at the notes! This process is called “active challenging” and it quite literally builds a neural and biochemical pathway in your brain. We use this process when we form long-term memories. The action of writing and drawing (not typing) seems to amplify the effect.
   - Uncover your notes and compare them with your memory work. Use a colored highlighter to highlight any mistakes or misunderstandings. Then move on to the next topic.
   - Don’t stop until you have actively challenged yourself on every topic of that day’s lecture notes.

4. **DRIVE-BY 3 (LONG-TERM MEMORY FORMATION):** This study session is for **building the long-term memory** of the lecture material.
   - This study session should be accomplished the day following drive-by 2. Repeat every step described for drive-by 2. **For each concept, craft a new description using your language skills...you are not trying to memorize phrases!** Pay careful attention to the mistakes highlighted in that study session. Highlight new mistakes with a different color.

5. **DRIVE-BY 4 (LONG-TERM MEMORY RETRIEVAL):** This study session is for **reinforcing the long-term memory** of the lecture material. Do it a few days before your exam. **LONG-TERM MEMORY RETRIEVAL IS THE ACTION PERFORMED DURING EXAMS.**
Note: I may occasionally lag behind in lecture. Whether you do the Mastering Genetics homework before or after I lecture about it, the process will reinforce your understanding.

<table>
<thead>
<tr>
<th>Week of</th>
<th>Lecture topic</th>
<th>Text</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/20</td>
<td>Introduction  Mitosis and Meiosis</td>
<td>Ch 2</td>
<td>Begin using the Study Recipe</td>
</tr>
<tr>
<td>8/27</td>
<td>Mitosis and Meiosis cont.</td>
<td>Ch 2</td>
<td></td>
</tr>
<tr>
<td>9/3</td>
<td>9/3 Labor Day holiday NO CLASS Mendelian Genetics</td>
<td>Ch 3</td>
<td></td>
</tr>
<tr>
<td>9/10</td>
<td>Extensions of Mendelian Genetics</td>
<td>Ch 4</td>
<td></td>
</tr>
<tr>
<td>9/17</td>
<td>9/19 Census date Chromosome Mapping</td>
<td>Ch 5</td>
<td>Quiz 1 Monday</td>
</tr>
<tr>
<td>9/24</td>
<td>Sex Determination and Sex Chromosomes Chromosome Mutations</td>
<td>Ch 7 Ch 8</td>
<td></td>
</tr>
<tr>
<td>10/1</td>
<td>Extra-nuclear Inheritance</td>
<td>Ch 9</td>
<td></td>
</tr>
<tr>
<td>10/8</td>
<td>10/10 Non-instructional Day NO CLASS DNA Structure</td>
<td>Ch 10</td>
<td>Quiz 2 Monday</td>
</tr>
<tr>
<td>10/15</td>
<td>DNA Replication and Recombination</td>
<td>Ch 11</td>
<td></td>
</tr>
<tr>
<td>10/22</td>
<td>DNA Organization into Chromosomes</td>
<td>Ch 12</td>
<td></td>
</tr>
<tr>
<td>10/29</td>
<td>The Genetic Code and Transcription</td>
<td>Ch 13</td>
<td>Quiz 3 Monday</td>
</tr>
<tr>
<td>11/5</td>
<td>Translation and Proteins</td>
<td>Ch 14</td>
<td></td>
</tr>
<tr>
<td>11/12</td>
<td>11/12 Veteran’s Day NO CLASS Mutation, DNA Repair and Transposition</td>
<td>Ch 15</td>
<td></td>
</tr>
<tr>
<td>11/19</td>
<td>Gene Regulation 11/21 Special assignment NO CLASS 11/23 Thanksgiving Holiday NO CLASS</td>
<td>Ch 16-17</td>
<td>CRISPR: The Discovery of Bacterial Adaptive Immunity Assignment due 11/21 midnight*</td>
</tr>
<tr>
<td>11/26</td>
<td>Gene regulation cont.</td>
<td></td>
<td>Quiz 4 Wednesday</td>
</tr>
<tr>
<td>12/3</td>
<td>Developmental Genetics Recombinant DNA Tech and Biotech</td>
<td>Ch 18 Ch 20-22</td>
<td></td>
</tr>
<tr>
<td>12/10</td>
<td>Population and Evolutionary Genetics</td>
<td>Ch 25</td>
<td></td>
</tr>
<tr>
<td>12/13</td>
<td>All Mastering Genetics homework assignments due midnight*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/14</td>
<td>FINAL EXAM 8:30 a.m.-10:30 a.m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* In this case, midnight actually means 11:59 pm

**CAMPUSS COUNSELING SERVICES**
Overwhelmed by the stress of juggling classes and work? Our campus offers excellent counseling services to support you!
Library 185; Phone (209) 667-3381; Web http://www.csustan.edu/Counseling

**STUDENT HEALTH CENTER**
You have already paid for access to health care on campus. Services include: birth control, flu shots, immunizations, pharmacy, check-ups, HIV testing, TB tests, and doctor’s notes for when you are sick!
Phone (209) 667-3396; Web http://healthcenter.csustan.edu