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The Mandelbrot Set

M = {c ∈ C | 0 → c → c2 + c → . . . remains bounded}

This set is fully described by iterating the complex-valued func-
tion

f(z) = z2 + c

where c is a fixed complex number. How? Ask me later.

Visit my website: www.csustan.edu/math/rock

and click on the “Mandelbrot Set applet” link.

This will take you takes you to: http://math.hws.edu/xJava/MBold/index.html



A question about the Mandelbrot Set:

How long is the boundary?
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So, aside from length, how else can we measure the size of the
boundary?
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DIMENSION



1D 2D 3D

A typical notion of dimension: Line segments are 1D, squares
are 2D, cubes are 3D. . .



1/3
(1/3)      = 3

(1/3)      = 9

# boxes to cover:

−1

−2

1 x 1

1/3 x 1/3

1

The dimensions D = 1 and 2 for each type of figure above satisfy
the following equivalent equations:

Nε = ε−D ⇔ D =
log Nε

− log ε

where ε is the size of the side length of the boxes used to cover
the objects and Nε is the minimum number of boxes required to
cover them.



The method of counting boxes allows one to define a notion of
dimension that assigns a real value (as opposed to simply an
integer value) to a subset of Euclidean space.

Definition 1. The box dimension dimB of a bounded subset F
of Rm is given by the following limit (when it exists):

dimB(F ) = lim
ε→0+

log Nε(F )

− log ε
,

where Nε(F ) is the smallest number of “cubes” with side length
ε that cover F .



begin with [0,1]

Step 0 in the construction of the Cantor set.



remove 1 of length 1/3

begin with [0,1]

Step 1. Note that there are now 2 intervals of length 1/3.



remove 1 of length 1/3

remove 2 of length 1/9

begin with [0,1]

Step 2 yields 4 intervals of length 1/9.



remove 1 of length 1/3

remove 2 of length 1/9

remove 4 of length 1/27

begin with [0,1]

Step 3 yields 8 intervals of lengths 1/27. Do you see the pattern?



remove 1 of length 1/3

remove 2 of length 1/9
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remove 8 of length 1/81

begin with [0,1]

Step 4. The pattern is as follows:

For Step n, there are 2n intervals of size 1/3n = 3−n.



remove 1 of length 1/3

remove 2 of length 1/9

remove 4 of length 1/27

remove 8 of length 1/81

remove 16 of length 1/243

begin with [0,1]

Step 5 yields 25 = 32 intervals of length 3−5 = 1/243.



remove 1 of length 1/3

remove 2 of length 1/9

remove 4 of length 1/27
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begin with [0,1]

  .
  .
  .

.. ..     .. .. .. ..     .. .. .. ..     .. .. .. ..     .. ..

and in the limit...

... is the Cantor set

An approximation of the Cantor set, which is what you would
get in the limit.

Note, to compute the dimension, we need to know how many
intervals (N = 2n) of whatever length (ε = 3−n) are required to
cover the set.
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and in the limit is...

self−similarity

... the Cantor set

The Cantor set exhibits a property called “self-similarity”.



  .
  .
  .

.. ..     .. .. .. ..     .. .. .. ..     .. .. .. ..     .. ..

The Cantor set exhibits the following properties:

• It has length 0.

• It is a closed and perfect subset of [0, 1] (every point is a
limit point).

• It is uncountable.

• It is self-similar.

• It has box dimension equal to log3 2. (?)



  .
  .
  .

.. ..     .. .. .. ..     .. .. .. ..     .. .. .. ..     .. ..

Note that when boxes of size ε = 3−n = 1/3n are used, a min-
imum number Nε(F ) = 2n boxes are required to cover the set.
Thus,

lim
ε→0+

log Nε(F )

− log ε
= lim

n→∞
log (2n)

− log (3−n)
= log3 2 ≈ 0.6309



Can you determine the box dimension of the set you get in the
limit? Try it! Assume that the length of the sides at Step 0 is
1. The set you get in the limit is called the Sierpinski Gasket.



1x1x1 4x1/4x1/4 16x1/16x1/16

Can you determine the box dimension of the set you’d get in the
limit? Try it! What does this say about objects with integer
dimension?



Find the box-counting dimension for each of the following ob-
jects. Google the names and see if you can find a nice description
of the constructions of the fractals in 6 to 10. If you like, use a
calculator to see if the numbers are between or equal to 0,1,2,
or 3.

1. The line segment with length 1 (use s = 1/3).

2. The line segment with length 1 (use s = 1/10).

3. The square with side length 1 (use ε = 1/3).

4. The Cantor set that has the 2nd and 4th intervals of length
1/5 removed at Step 1.

5. The Cantor set that has just the middle interval of length
1/11 removed at Step 1.

6. The Koch Snowflake.

7. The Quadratic Koch Island.

8. The Sierpinski Carpet.

9. The Sierpinski Ternary Gasket.

10. The Menger Sponge.

Hint for problems 4–10: Draw Steps 0 and 1 to help see (literally)
what ε and N should be.



Definition 2. A fractal string Ω is a bounded open subset of the
real line. The collection of lengths `j of the disjoint intervals is
denoted L.

Theorem 3. If a fractal string Ω in [0, 1] is of total length 1
and has an infinite number of lengths in its sequence L, then

dimB(∂Ω) = inf

{
σ ∈ R |

∞∑
j=1

`σ
j < ∞

}
,

where ∂Ω = [0, 1] \ Ω.

Definition 4. The geometric zeta function of a fractal string Ω
with lengths L is

ζL(s) =
∞∑

j=1

`s
j =

∞∑
n=1

mnl
s
n,

where Res > dimB(∂Ω).

Definition 5. The set of complex dimensions of a fractal string
Ω with lengths L is

DL(W ) = {ω ∈ W | ζL has a pole at ω}.
where W is a certain region in the complex plane.



Nifty things one can do with fractals strings, zeta functions, and
complex dimensions:

• Find the box-counting dimension of the complements of
fractal strings (Theorem 3).

• Find the volume of the inner ε-neighborhood of the bound-
ary of certain fractals.

• Investigate properties of fractal strings and multifractal
measures.

• Show, in a new way, that the Critical Zeros of the Riemann
Zeta Function do not lie in vertical arithmetic progression.

• Reformulate the Riemann Hypothesis as an inverse spectral
problem.

For the Cantor String, the geometric zeta function is

ζL(s) = ζCS(s) =
∞∑

n=1

2n−13−ns =
3−s

1− 2 · 3−s
.

Upon meromorphic continuation, we see that the last equation
above holds for all s ∈ C, hence

DL = DCS =

{
log3 2 +

2imπ

log 3
| m ∈ Z

}
.



The complex dimensions of the Cantor String.



The complex dimensions of another fractal string.



The first few stages in the construction of a mass distribution ν

on the Cantor set. At each stage, mass is split from the previous
stage in ratios of 1/3 on the left and 2/3 on the right.



Definition 6. The regularity A(U) of a (Borel) measure µ on
a subset U ⊂ [0, 1] with range in [0,∞] is

A(U) =
log µ(U)

log |U | ,

where | · | = λ(·) is the Lebesgue measure on [0, 1].

Equivalently, A(U) is the exponent α that satisfies

|U |α = µ(U).

Definition 7. For a measure µ and ordered family of partitions
P, the partition zeta function with regularity α is

ζµ
P(α, s) =

∞∑
n=1

pn∑

k=1

δα(P k
n )|P k

n |s,

where δα(P ) equals 1 if A(P ) = α and equals 0 otherwise, pn

is the number of intervals in the partition Pn, and Res is large
enough.

For the measure ν and the family P of partitions given by the
open and closed intervals in the construction of the Cantor set,
the regularity values are

α = α(k1, k2) =
log (2nk1/3nk2)

log (1/3nk2)
= 1− k1

k2
log3 2,

where k1 and k2 are relatively prime non-negative integers such
that k1 < k2.
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Construction of the partition zeta function ζν
P(α(1, 2), s). The

solid black blocks correspond to the closed intervals with regu-
larity α(1, 2). In general,

ζν
P(α(k1, k2), s) =

∞∑
n=1

(
nk2

nk1

)
3−nk2s,

for Res large enough.



α

σ

dim  (supp(  ))M

1 − (1/2)log  21 − log  2 1

ν

3 3

The abscissa of convergence function σ for the measure ν has
the form

σ(α) =
(α− 1)

log3 2
· log3

(−(α− 1)

log3 2

)

−
(

1 +
(α− 1)

log3 2

)
· log3

(
1 +

(α− 1)

log3 2

)
.

The maximum of σ is attained at α = α(1, 2) = 1− (1/2) log3 2
and this value coincides with the box dimension of the support
of the measure ν. That is,

dimB(supp(ν)) = max{ σ(α) | α = α(k1, k2)}
= log3 2.



remove 1 of length 1/3

remove 2 of length 1/9

remove 4 of length 1/27

remove 8 of length 1/81

remove 16 of length 1/243

begin with [0,1]

  .
  .
  .

.. ..     .. .. .. ..     .. .. .. ..     .. .. .. ..     .. ..

.. ..     .. .. .. ..     .. .. .. ..     .. .. .. ..     .. ..

.. ..     .. .. .. ..     .. .. .. ..     .. .. .. ..     .. ..

.. ..     .. .. .. ..     .. .. .. ..     .. .. .. ..     .. ..

and in the limit...

... is the Cantor set

self−similarity

The Cantor set is constructed by removing 2n−1 open intervals
of length 1/3n for every n ∈ N from the unit interval [0, 1].
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