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Abstract 

This paper will cover how I utilized a neural network to train a Jetbot to imitate predator-prey relationships. The Jetbot 
was created using blueprints provided by NIVDIA. The robot was trained using PyTorch and its various open-source libraries. 
The goal of this project was to improve upon the research conducted by William Grey Walter and Michael Arbib. Both 
conducted previous work on replicating animal behavior through predator-prey relationships to examine the interconnectedness 
of the brain. By replicating their research using a neural network, I can better emulate predator-prey relationships and closely 
analyze the connectivity of the brain.  
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Introduction

Robotics has seen a dramatic evolution since 
its advent. Early robotics saw its place in a child’s 
playroom as wind-up toys with preprogrammed 
motions (Nocks, 2017). Now robotics can be seen in 
hospitals assisting with complex surgeries (Bogue, 
2011) or in disaster zones searching for survivors 
(Tadokoro, 2005). A major contributor to this 
evolution was the inspiration garnered from 
biological beings.  

Scientists looked to the anatomy of living 
creatures to overcome challenges with robotic 
movement. Big Dog was developed by Boston 
Dynamics to overcome problems faced by wheeled 
robots (Raibert et al., 2008). Another example is 
micro aerial vehicles (MAVs). The downside to using 
these was its inability to land anywhere. Scientists 
looked to flying insects to solve this problem and 
developed a MAV that can perch and take off from 
any surface and consequently land safely (Granule et 
al., 2016).  

 Scientists also analyzed behaviors to 
understand and implement complex thinking. Two 
examples are William Grey Walter’s tortoises 
(Walter, 1953) and Michael Arbib’s Rana 
Computatrix (Arbib 2003). Walter and Arbib studied 
predator-prey relationships in various animals and 
replicated these behaviors using the technology 
available to them at the time. They believed that by 
studying these relationships they would gain insight 
into the association between brain and action (Arbib, 
2003). Both will be discussed further in the 
background section of this paper as they are the direct 
inspiration for this project.  

This project sought to improve on the 
previous work done by Walter and Arbib by utilizing 
a neural network. A neural network is a 
mathematical-based learning system that uses a 
network of functions to understand various kinds of 
data. The concept originated from human biology and 
how the human brain functions using neurons to 
interpret inputs from the biological senses 
(Schmidhuber, 2015). Our goal was to mimic 
predator-prey behaviors by training the neural 
network to identify predator versus prey and 
assigning actions to the different identifications. By 
doing this, we could observe how the brain interprets 
situations and executes actions.  
Previous Research 

There has been extensive research into 
predator-prey relationships with regard to robotics. 
Two of the most fundamental projects are William 
Grey Walter’s tortoises and Michael Arbib’s Rana 
Computatrix. Walter’s tortoises were inspired by 
neuroscience and the complex interconnectedness of 
neurons within the brain (Walter, 1953). Arbib 
wanted to improve on Walter’s work by making the 
thinking process more like the biological life form he 
based his robots on (Arbib, 2003). Both scientists 
were interested in exploring predator-prey behaviors 
as a means for understanding thinking.   
 William Grey Walter is considered a 
founding father of creating authentic artificial life 
(Holland, 1997). He achieved this honor through the 
creation of a series of tortoises designed to replicate 
complex behaviors by utilizing a rich 
interconnectedness between a minimal number of 



parts (Walter, 1953). Walter’s first design was called 
the “Machina Speculatrix” which roughly translates 
to "machine that thinks" (Mataric, 2007). It was a 
simple design with the only resemblance of a tortoise 
being its clear plastic shell protecting the inner 
mechanical components.  

There was one driving wheel controlled by a 
steering and driving motor. Attached to this wheel 
was a single photoelectric cell. This cell took in the 
light as sensory input and was attached to the driving 
wheel to ensure it was always pointing in the 
direction the robot was facing. The robot was taught 
to react to light in specific ways. If the light was of 
high intensity, it was programmed to flee. If the light 
was of low intensity, it was programmed to approach. 
This mimicked remedial predator-prey behavior 
exhibited in tortoises and other animals (Walter, 
1953). 

Michael Arbib believed that while Walter’s 
tortoises were a pivotal invention in robotics 
evolution, they were not truly “thinking” machines. 
He sought to improve on Walter’s research by 
creating his own set of robots exhibiting frog and 
toad-like visuomotor coordination. He began by 
making robots with basic predator-prey functions, 
like those of Walter’s tortoises. A small object would 
represent a prey, while a large object would represent 
a predator. If a small moving object were presented, 
the robot would snap at the object. If a large moving 
object is in view, the robot would avoid the object.  
Arbib took this a step further by relating the behavior 
to the anatomy of a frog (Arbib, 2003).  

Each eye of a frog sends visual information 
to the opposite side of the brain, and the midbrain 
region known as the tectum. Layered in front of the 
tectum is the pretectum. Arbib made the hypothesis 
that the small moving object identification and the 
resulting action are in the tectum while the large 
moving identification and corresponding action are in 
the pretectum. Through this additional programming, 
Arbib observed an interesting behavior. When two 
small moving objects were identified, the robot 
would snap in between the two objects rather than 
picking one over the other (Arbib, 2003). The same 
behavior can be observed in sentient frogs. This 
showed that Arbib was successfully able to mimic 
animal behavior in his Rana Computatrix and create a 
truly thinking machine (Murphy, 2019). 
Methodology 

Inspired by these two scientists, I sought to 
replicate predator-prey behavior to study the 
interconnectivity of the brain. To improve on their 
work, I utilized a neural network to better model a 

biological brain. I trained this neural network to 
identify a blue pool ball as a predator and a yellow 
pool ball as a prey. I then analyzed what this 
programmed behavior can teach us about biological 
behavior. The remainder of this paper will discuss the 
details of how this was accomplished.  

There are several different ways to examine 
the interconnectivity of the brain. For this project, I 
focused on functional connectivity. Functional 
connectivity is based on statistics and refers to parts 
of the brain that are dependent on one another 
regardless of having direct structural links (Sporns, 
2007). The living brain relies heavily on statistics to 
manage the flow of information gathered from the 
environment and determine behavioral output (Chen, 
2019). Because of this, neural networks are designed 
to make decisions based on statistical inferences to 
model the brain as closely as possible. 
 For the design of the robot, I decided to use 
NVIDIA’s Jetbot. NVIDIA provides all design files 
and a complete list of parts to create the Jetbot from 
scratch on GitHub. My mentor, Dr. Xuejun Liang, 
followed this guide to construct the Jetbot I used for 
this project. The Jetbot utilizes the computational 
power of the Jetson Nano. This computer allows 
users to run multiple neural networks in parallel 
(NVIDIA). I also decided to use the convolutional 
neural network (CNN) AlexNet. 
 AlexNet is different from earlier CNNs due 
to its hierarchical image classification structure. At 
the lower layers of the network, images are seen as 
highly pixelated with low resolution. This layer is 
used to determine rough features like the edges of an 
object or color. At the higher layers, images are 
processed in greater detail. By performing image 
classification in this manner, the computational time 
is greatly decreased allowing large datasets to be 
analyzed and the creation of accurate models to be 
produced (Krizhevsky et. al, 2012). Due to these 
advantages, AlexNet was an ideal CNN for the 
project.  

I trained the robot to perform three actions, 
collision avoidance, avoidance of predators, and 
attraction to prey. The intention of teaching the robot 
collision avoidance was to simulate an animal 
moving about its territory while looking out for 
predators or prey. I used a table to simulate its 
territory and two pool balls to represent predator vs 
prey.   

I first created categories that separated and 
labeled images taken from a mounted camera. These 
categories were: blocked, free, predator, and prey. 



The categories blocked and free were specific to the 
collision avoidance function. These simply signified 
whether the robot was free to continue its path or if it 
should stop to avoid a collision. The categories 
predator and prey refer to when there is a predator or 
prey in the robot’s field of view. 

To train the model to recognize these 
categories, I took two hundred pictures using the 
mounted camera for each category. These pictures 
were stored in the Jetson nano in their corresponding 
directories. For the collision avoidance, I slowly 
moved the robot along the edge of a table taking a 
picture about every inch and labeling this “blocked”. 
I then moved the robot around the table first 
horizontally, then vertically, and lastly diagonally 
across every movable inch. These were labeled 
“free”. For the predator-prey responses, I took 
pictures with a blue pool ball in its vision and a 
yellow pool ball in its vision. The blue pool ball was 
used to represent a predator. The yellow was used to 
represent the prey. It was important to take these 
pictures at different times during the day as the table 
that was used was next to a window and the change 
of light affected the accuracy of the model. I then ran 
these images through a training program.  
 AlexNet divided the image set equally. Half 
of the set was used to train the model and the other 
half was used as a test set. While a higher number of 
epochs is favored, five epochs were used to find the 
best training model. This was due to the large number 
of images the training algorithm had to handle. With 
just the collision avoidance being trained (400 
images), it was easy to have ten epochs. The time for 
compilation was too costly to maintain the ten epochs 
when the combined total for the predator and prey 
detection and the collision avoidance (1,000 images) 
were used. Therefore, the number of epochs was 
reduced to 5 to allow for retraining if necessary. The 
training program would calculate the accuracy of 
each epoch and pick the best one to assign as the 
model.  

The final step was to program behaviors for 
each category. This was done using a series of if-else 
statements. For the collision avoidance, if the 
probability of the view being blocked was greater 
than 0.5 or 50%, the robot would first move back 
then to the left. Otherwise, it would continue forward. 
For the predator-prey identification, if the probability 
of a predator being in the view was greater than 0.5, 
then the robot would move backward. If the 
probability of prey being in view was greater than 
0.5, then the robot would move forward. 

 
 

Results 
The robot was able to successfully execute 

collision avoidance. It was also able to differentiate 
between predator and prey. When presented with the 
blue ball, it moved away from it. Thus, showing it 
recognized it as a predator and avoided it 
appropriately. When presented with a yellow ball, it 
moved towards it. Proving that it identified it as a 
prey and responded correctly.  

To test the robot’s thinking, different colors 
of pool balls were used. A black, green, red, and 
orange ball was placed in view of the robot. When 
presented with the black or green balls, the robot 
responded as if there was a predator in sight. When 
presented with the red or orange balls, the robot 
would identify them as prey. If both the black and 
green ball were used, it would once again react as if it 
is seeing a predator. If both the red and orange ball 
were used, it would identify them as being prey and 
move towards them. If any of the combinations of a 
dark-colored ball and a light-colored ball was used, it 
would only identify the prey and move towards the 
object.  
 
Conclusion 

Using a neural network allowed us to closer 
examine functional connectivity due to its statistics-
based approach. Like our brains, a neural network 
makes guesses as to what is identifying based on 
previous knowledge. This was exemplified when it 
was exposed to a color of a ball it had not seen 
before. For example, when exposed to the black ball, 
it responded as if it was exposed to a blue ball. This 
is due to the robot’s limited knowledge base. The 
robot was only programmed to respond to a situation 
where a blue ball was in view or when a yellow ball 
was in view. Upon seeing the black ball, it had to 
make a statistical guess about what it was seeing and 
therefore thought it was more likely a blue ball in 
view rather than a yellow one. It then acted 
accordingly and moved away from the ball. By 
observing this behavior, it is clear that actions are 
dependent on statistical inferences made by the brain.  
 
Future Research 
 In continuing this project, I would like 
to pick a specific animal and model its brain as 
closely as possible. By doing this, I could better 
analyze the brain processes the living creature 
would perform. Additionally, it would be 
interesting to add more features such as stalking 
the prey upon recognition. This way, I can 
examine how the brain performs different types 
of actions. For predator recognition, it would be 



interesting to add a defense mechanism that relates to 
the specific animal I would be attempting to model. 
By doing this, it would be easier to see what steps the 
brain needs to take and can be compared to the brain 
usage different defense mechanisms need. This 
project has a lot more potential, and it is something I 
suspect others will expand on in the future. 
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