
Harmonic Motion Equations with Related Applications 
 

Marissa Morado1, Andrew Lazar, and Alejandro Rios 
 

B.S. Candidate, Department of Mathematics, California State University Stanislaus 1 University Circle, Turlock, CA 95382 
 
 

Received 16 April, 2019 
 
 

Abstract 
The paper will focus on the understanding of harmonic functions and their relationship with its applications. Particularly, we will 
be investigating its foundations in differential equations and numerical methods and its effect on the expression of mathematical 
models. Using ordinary differential equations along with numerical methods further analyzes various mathematical applications 
often seen in spring problems and in the oscillations of objects. Thus, we begin on a comprehensive understanding of harmonic 
functions and their relationship with its applications, particularly investigating its foundations in four different types of ordinary 
differential equations. The equations include the homogenous, non-homogenous, resonance and damped equations. In order to 
create a thorough understanding, we must take a closer look at systems which contain an oscillatory motion. In addition, important 
concepts such as amplitude and frequency will be incorporated to fluently comprehend the background information given and 
further explain the applications of harmonic motion equations. Through the implementation of MATLAB, visual representations 
of the equations and their coefficients were created and analyzed to further determine the importance in the variance of coefficients. 
Furthermore, being able to thoroughly comprehend how each equation varies from one another builds a correlation on the emphasis 
of real-world applications on simplistic and ordinary mathematical concepts and equations. In conclusion, the resulting information 
may be used as an invaluable resource for students and construct an oscillatory system varying from elementary mathematics to 
higher level applicational mathematical equations.  
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Introduction 
 The purpose of this research is to demonstrate 
the importance of mathematics and mathematical 
modeling. Through the use of Differential Equations 
and Harmonic Motion Equations, we will further 
investigate the impact of external forces and their role 
oscillating objects. By investigating the motion of a 
system, it will shift focus on the sinusoidal curve when 
external forces are acting upon it.  

Now, we will focus on some important terms 
that are necessary to grasp the idea of harmonic 
motion. A simple harmonic motion is defined to be an 
oscillation motion under a retarding force proportional 
to the amount of displacement from an equilibrium 
position [9]. A few ideas that we will explore include 
resonance, frequency and oscillation. Resonance is 
defined as the condition in which an object is subjected 
to an oscillating force having a frequency close to its 
own natural frequency. Frequency is described as the 
number of waves that pass a fixed place in a given 
amount of time. Finally, oscillation is a repetitive back 
and forth motion at a constant velocity [9]. 

In this paper, we will investigate four 
different differential equations to analyze the 
movement of a harmonic system. These equations are: 

(1)  𝑥′′(𝑡) + 𝑘(𝑥(𝑡) = 0 
(2) 𝑥′′(𝑡) + 𝑘(𝑥(𝑡) = 𝑐𝑜𝑠(𝑤𝑡), where 𝑤 ≠ 𝑘 
(3) 𝑥′′(𝑡) + 𝑘(𝑥(𝑡) = 𝑐𝑜𝑠(𝑤𝑡), where w = k 
(4) 𝑥′′(𝑡) + 2𝜆𝑥′(𝑡) + 𝑘(𝑥(𝑡) 	= 	𝑐𝑜𝑠(𝑤𝑡) 

 
The first three equations are described as 

simple harmonic motion. They analyze the behavior of 
an oscillating object from a theoretical point of view. 
The fourth equation is also a mass system, but includes 
a damping factor which affects the behavior of the 
equation. By adding the damping force, it creates a 
more accurate and realistic movement of the system. 
 One of the most important aspects of these 
equations are the variables. In order to have a firm 
grasp on the meaning of the equations, we must break 
down every variable and look at its meaning. This will 
allow us to understand every part of the equation. In 
the appendix, there will be a chart in which every term 
and coefficient will be explained in detail.  

 
Origin of the Homogeneous Equation 

It is necessary to understand the basis of these 
equations and their origin in order to understand the 
impact of each equation. The foundational differential 
equation is reliant upon two simple free-motion 
equations: Hooke’s Equation and Newton’s Second 
Law. They are important because the differential 
equation, 𝑥′′(𝑡) + 𝑘(𝑥(𝑡) = 0 is a result of a 
combination between these two foundational 
equations. We will proceed by exploring both Hooke’s 
Equation and Newton’s Second Law and how they are 

use to create the introductory differential equation of 
motion.  

Hooke’s Law states that the amount stretched is 
proportional to the restoring force [5]. When coming 
up with these equations, there are certain criteria that 
have to be met to show that it is a simple harmonic 
motion (SHM) equation. That is: 

1) There is a restoring force proportional to 
displacement from equilibrium 

2) Potential energy is proportional to the square 
of the displacement 

3) Period/Frequency is independent of the 
amplitude 

4) Position, velocity, and acceleration are 
sinusoidal in time (modeled by sine and 
cosine) 

 
First, we will take a look at Hooke’s Law 

and how it pertains to SHM equations. With Hooke’s 
Law, we need a distance of displacement, x(t), and a 
spring constant that exerts an equal and opposite 
force. The equation for Hooke’s Law is: 

𝐹 =	−𝑠 ⋅ 𝑥(𝑡) 
where 𝑠 is our spring constant acting in the opposite 
direction on the force being applied. The other 
variable, x(t), is our restoring force proportional to 
the displacement of equilibrium. 
 Now we will take a look at Newton’s 
Second Law. Newton’s Second Law pertains to the 
behavior of objects for which all existing forces are 
not balanced. That is, the acceleration of an object is 
dependent upon two variables — the net force acting 
upon the object and the mass of the object. [9] This is 
where we get the formula: 
 

𝐹 = 𝑚𝑎 
It is also important to note that acceleration 

is the second derivative of displacement with respect 
to time. That is  

𝑎 = 89
8:

 and 𝑣 = 8<
8:

 
Notice how in both laws, the equations for 

both are dealing with force, F. Since both of the 
equations are pertaining to force, we are able to set 
them equal to each other and get: 

𝐹 = 𝑚 ⋅ 𝑥′′(𝑡) 
 

𝑚 ⋅ 𝑥′′(𝑡) = 	−𝑠 ⋅ 𝑥(𝑡)  
 
Dividing both sides by the mass we get: 

𝑥==(𝑡) =
−𝑠
𝑚 ∙ 𝑥(𝑡) 

Since our spring constant is equal to Newtons over 
meters we have the 

𝑠 =
𝑁
𝑚 
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Notice that the units for Newtons is (1 kg)∙ (@
<A
). Then 

we have the equation 

𝑠 =
𝑘𝑔
𝑠(  

 
s = CDEA

FG

 

Which simplifies down to  

𝑠 =
1
𝑠( 

Now we will introduce a new variable, k measured in 
units of (1/s). Thus, we come up with the new term 
𝑘(= (1/𝑠() and introduce this constant into the 
original equation, getting 

𝑥′′(𝑡) = -𝑘(x(t) 
Upon adding our new term to the other side, we get 
our final product that is a simple harmonic motion 
equation that looks like: 

𝑥′′(𝑡) + 𝑘(𝑥(𝑡) = 0 
  In combining Hooke’s Law and Newton’s 
Second Law of Motion, we create an equation that is 
identical to the homogeneous differential equation. 
This equation is also known as the Harmonic 
Oscillator equation, which describes the theoretical, 
or natural movement of the object without any 
outside forces affecting its movement. As described 
above, 𝑥(𝑡)	describes the displacement of the object 
over time, while 𝑥=(𝑡) describes the velocity of the 
object over a given time period. 
 
Homogeneous Equation  
 Our Homogeneous Equation is 𝑥′′(𝑡) +
𝑘(𝑥(𝑡) = 0. To find the solution of the homogeneous 
equation, we must first find the auxiliary equation 
related to the harmonic motion equation. In the 
auxiliary equation, we assign every nth-order 
derivative with a nth-order exponent. Thus,  𝑥==(𝑡),	 
second derivative, will be written as 𝑛( and x(t) will 
be written as 1. Thus, the auxiliary equation will be: 

𝑛( + 𝑘( = 	0 
Our solutions to the auxiliary equation will be 
complex, equaling 

 𝑛K = 𝑘𝑖	𝑎𝑛𝑑	𝑛( = 	−𝑘𝑖. 
Now that we have the solutions, we can create a 
general solution with our complex numbers.  Our 
general solution for our differential equation will be: 

𝑥(𝑡) 	= 	 𝑐K𝑐𝑜𝑠(𝑘𝑡) + 𝑐(𝑠𝑖𝑛(𝑘𝑡) 
Through our general solution, we are able to 

see that the natural frequency of the object is k. This 
means that there are no external forces acting on the 
system. In reality, this equation treats the object as if it 
were inside a vacuum. The homogeneous solution 
becomes a building block for the non-homogeneous 
solution. In looking at the solution to the homogeneous 
equation, we can see that there are many variables that 

need to be taken into consideration. These include the 
arbitrary constants 𝑐Kand 𝑐(. When these two variables 
have different values, they can change the expression 
of the equation.  There are four different possible cases 
include: 

1) 𝑐K = 𝑐( 
2) 𝑐K > 𝑐( 
3) 𝑐K	< 𝑐( 
4) 𝑐K= −𝑐( 

 As mentioned earlier, we observe each case 
to account for each possibility in the real world. As 
initial conditions change from scenario to scenario 
we will verify that the solutions will behave similarly 
for the homogenous case. Later we will discuss the 
non-homogeneous case in which the amplitude will 
vary slightly. As one can see in the graph below, the 
amplitude in the homogeneous equation stays 
constant, with no variations to the size in amplitude 
in each wave.  
 

 
Figure 1. Graph of Homogeneous Equation  

 
The Non-Homogeneous Equation 
 The non-homogenous equation is 𝑥′′(𝑡) +
𝑘(𝑥(𝑡) = 𝑐𝑜𝑠(𝑤𝑡), where 𝑤 ≠ 𝑘. As one can see, it is 
very similar to the homogeneous equation, except 
there is an outside force acting upon the system 
(cos	(𝑤𝑡)). This equation will analyze the motion of 
the object when it is close to resonance. This focuses 
on external forces that may affect its frequency. The 
particular solution to the equation will be an equation 
containing sines and cosines. Since the equation is 
very similar to the homogeneous equation, our 
solution will be almost identical to that of the 
homogeneous solution, but with the addition of the 
particular solution. Thus, our solution will look like: 

𝑥(𝑡) = 	 𝑐K𝑐𝑜𝑠(𝑘𝑡) + 𝑐(𝑠𝑖𝑛(𝑘𝑡) + 𝑥R 
The particular solution can be found using the method 
of undetermined coefficients. 
Let 

𝑥R = 𝐴𝑠𝑖𝑛(𝑤𝑡) + 𝐵𝑐𝑜𝑠(𝑤𝑡), 
where 𝑥R	is the particular solution to the non-
homogenous equation. The particular solution is 
necessary because we no longer have a homogeneous 
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equation. Since our equation is equal to cos(wt), we 
must consider its derivative as well. That is why   

𝑥R = 𝐴𝑠𝑖𝑛(𝑤𝑡) + 𝐵𝑐𝑜𝑠(𝑤𝑡). 
Then, we take the first and second derivatives of the 
particular solution 

𝑥R′ = 𝐴𝑤𝑐𝑜𝑠(𝑤𝑡) − 𝐵𝑤𝑠𝑖𝑛(𝑤𝑡) 
    

𝑥R′′ = −𝐴𝑤(𝑠𝑖𝑛(𝑤𝑡) − 𝐵𝑤(𝑐𝑜𝑠(𝑤𝑡) 
Next, we plug the particular solution into the 
differential equation, so we will have, 

 
𝑥R==(𝑡) + 𝑘(𝑥R(𝑡) = 	−𝐴𝑤(𝑠𝑖𝑛(𝑤𝑡) −

𝐵𝑤(𝑐𝑜𝑠(𝑤𝑡)+𝑘([𝐴𝑠𝑖𝑛(𝑤𝑡) + 𝐵𝑐𝑜𝑠(𝑤𝑡)] = 𝑐𝑜𝑠(𝑤𝑡) 
 

−𝐴𝑤(𝑠𝑖𝑛(𝑤𝑡)− 𝐵𝑤(𝑐𝑜𝑠(𝑤𝑡) + 𝐴𝑘(𝑠𝑖𝑛(𝑤𝑡)
+ 𝐵𝑘(𝑐𝑜𝑠(𝑤𝑡) = 𝑐𝑜𝑠(𝑤𝑡) 

 
𝐴𝑠𝑖𝑛(𝑤𝑡)[𝑘( − 𝑤(]+ 𝐵𝑐𝑜𝑠(𝑤𝑡)[𝑘( − 𝑤(] = 𝑐𝑜𝑠(𝑤𝑡) 

 
Now, set the cosines on each sides of the equation 
equal to one another and the sines equal to each 
other. Thus,  
 
𝐴𝑠𝑖𝑛(𝑤𝑡)[𝑘( − 𝑤(] = 0 and  𝐵𝑐𝑜𝑠(𝑤𝑡)[𝑘( − 𝑤(] = 𝑐𝑜𝑠(𝑤𝑡) 
 
Therefore,  

𝐴 = 0 and  𝐵 = K
CAWXA

 
 

So,  

𝑥R =
1

𝑘( − 𝑤( cos	(𝑤𝑡) 
 
Thus, the solution for the Non-Homogenous case is: 

𝑥(𝑡) = 	 𝑐K𝑐𝑜𝑠(𝑘𝑡) + 𝑐(𝑠𝑖𝑛(𝑘𝑡) +
1

𝑘( − 𝑤( cos	(𝑤𝑡) 
 
The non-homogeneous equation is very 

important because it is considered a more realistic 
situation. By adding the 𝑐𝑜𝑠(𝑤𝑡)on the opposite side 
of the equation, it begins to integrate the outside forces 
that affect the system. By incorporating the cos(wt) to 
demonstrate the outside forces, it converts the 
differential equation from a theoretical viewpoint to an 
application problem. Below, is a graph of the non-
homogenous case so that one may have a visual 
representation of what the equation signifies.  

 

 

Figure 2. Graph of Non-Homogenous Case 
 

Resonance Equation 
Our third equation focuses when the system 

reaches resonance. If the system’s external forces 
cause it to meet the natural resonance of the system, it 
can cause the system to move uncontrollably. Since 
there is no particular method that can solve when 𝑤 =
𝑘, we will approximate its solution through limits. We 
will begin by taking the limit of the solution of the 
non-homogenous equation and using it as our base for 
this solution. Thus, 

lim	
X→C

( 𝑐K𝑐𝑜𝑠(𝑘𝑡) + 𝑐(𝑠𝑖𝑛(𝑘𝑡) +
1

𝑘( − 𝑤( cos	(𝑤𝑡))	. 
 
Our main priority will be evaluating  
 

lim
X→C

(
1

𝑘( − 𝑤( cos	(𝑤𝑡)). 
 
Directly evaluating our limit would result in an 
indeterminant form. Thus, L’Hospita’ls rule is 
necessary to solve the limit.  So, 
 

 
 

Therefore, our general solution for the Resonance 
Equation is: 

𝑥(𝑡) = 𝑐K𝑐𝑜𝑠(𝑘𝑡) + 𝑐(𝑠𝑖𝑛(𝑘𝑡) +
𝑡𝑠𝑖𝑛(𝑘𝑡)
2𝑘  

 
We consider the case where w = k because at 

this point, the oscillations of the object have achieved 
resonance. Once the oscillations begin to increase, 
they continuously become large. In a spring system 
this means they have gone beyond their elastic limit. 
Thus, in order to stop the oscillations from achieving 
resonance, we need a damping force.  

 
Figure 3. Graph of Resonance Equation 

 
Introduction to the Damped Equation 

The fourth equation also inquests the 
movement of the system, but includes a damping 
force, unlike the other equations. A damping force is a 
retarding force such that over time the oscillations of 
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reducing the amplitude. The damping force is 
important in modeling realistic systems, as it forces the 
system to return to equilibrium. Since the system is not 
suspended in a vacuum, there will be at least one 
damping force due to the surrounding medium. The 
damping force creates three different scenarios for the 
equation: overdamped (𝜆( − 𝑘(>0), critically damped 
(𝜆( − 𝑘(= 0), and underdamped (𝜆( − 𝑘(< 0).  

While considering the external forces of the 
equation, we must also consider the effect of the 
damping force on the system. In most cases, the 
damping force exists in order to force the system back 
into equilibrium. Without the damping force, the 
system would continue to oscillate indefinitely. The 
damping force may be expressed through friction, 
shock absorbers, and many other things that help 
return the motion to equilibrium.  

In order to determine if the fourth equation is 
overdamped, critically damped, or underdamped, we 
must look at the auxiliary equation, 

𝑥′′(𝑡) + 2𝜆𝑥′(𝑡) + 𝑘(𝑥(𝑡) = 0 
And find its solution. The damping force is denoted 
by 2. This force is what enables the mass system to 
approach equilibrium over time, thus allowing the 
oscillatory displacement of the object to become 
minimal. Once we set up and find the solutions to our 
auxiliary equations, we get: 

𝑛( + 2𝜆𝑛 + 𝑘( = 0 
 

𝑛 =
−2𝜆 ± √4𝜆( − 4𝑘(

2 = −𝜆 ±`𝜆( − 𝑘( 
Now that we have the solutions to the characteristic 
equation for (4), we can now figure out if the forces 
acting upon our equation are over, critically, or 
underdamped. To do this, we focus on the 
discriminant, 𝜆( − 𝑘(. 
 
Overdamped Equation 

If 𝜆( − 𝑘(> 0, we refer to this situation as 
overdamped. One real life application to overdamped 
motion is through the modelling automatic paraplegic 
doors. The design of these types of doors includes a 
spring, which is damped. This damping allows the 
door to open and close at a chosen rate [8]. This 
damping is overdamped because the opening and 
closing is not an oscillatory motion. When the motion 
is overdamped, we notice the damping constant, 𝛽 =
2𝜆𝑚, is larger when compared to the spring constant, 
k, thus resulting in a smooth, generally non-oscillating 
curve.  The solutions are modelled by the following, 
𝑛K = −𝜆 + 𝑖√𝑘( − 𝜆(  and  𝑛( = −𝜆 − 𝑖√𝑘( − 𝜆(     

 
𝑥(𝑡) = 𝑐K𝑒cd: + 𝑐(𝑒cA:  

 
𝑥(𝑡) = 𝑐K𝑒(Wefg`C

AWeA	): + 𝑐(𝑒(WeWg`C
AWeA			):  

 Thus, the case of overdamped occurs results 
in the above characteristic equation x(t)and can be 
used as a basis in modeling applications such as the 
design of paraplegic doors and more. 
 
Critically Damped Equation 

If 𝜆( − 𝑘(= 0, then we say that it is critically 
damped. When an object is critically damped, the 
curve will graphically cross the horizontal axis once, 
achieve maximum amplitude, and over time decrease 
to 0. Properties of the curve that we notice are that it is 
continuous and contains oscillations with 
infinitesimally small amplitudes. Physical systems 
that exhibit critically damped motion are shock 
absorbers on cars. The springs in the shock absorber 
will react to any shock, such as driving over a speed or 
pot hole, due to the spring coming back to equilibrium 
at a fast rate [4]. A noticeable property of the damping 
force associated with being critically damped slight is 
any decrease in the force can result in an oscillatory 
motion. The solutions for the critically damped 
scenario are modeled by the following, 

 𝑛K = −𝜆  and 𝑛( = −𝜆        
  

𝑥(𝑡) = 𝑐K𝑒We: + 𝑐(𝑒We:  
 Thus, our characteristic equation is shown 
above and can be used in the modelling of the 
functionality of shock absorbers and many other 
applications.  
 
Underdamped Equation 

 Finally, if 𝜆( − 𝑘(< 0, then the equation is 
underdamped. Physically, what is happening to the 
object moving in underdamped motion is the 
amplitude of the object is decreasing over time. 
Physical systems that experience underdamped motion 
are suspension bridges, which exhibit this type of 
damping due to their design. The suspension bridge is 
designed with suspension cables made of springs, and 
are designed with a piece called a girder which helps 
weigh down the bridge. Because of external forces 
acting on the it, the bridge will swing in an oscillatory 
motion, thus the girder acts as the damping force 
which slowly decreases these oscillations to the point 
of becoming close to zero [7]. 

 When underdamped, we notice the damping 
constant, 𝛽, is small when compared to the spring 
constant, k. The most important phenomena associated 
with underdamped motion is that as 𝑡 ⟶ ∞ the 
amplitude of motion, 𝑒We: → 0.	The solutions for the 
underdamped scenario are modelled with the 
following, 
𝑛K = −𝜆 + 𝑖√𝑘( − 𝜆(   and     𝑛( = −𝜆 − 𝑖√𝑘( − 𝜆( 

 
𝑥(𝑡) = 𝑒We:[𝑐K cos j`𝑘( − 𝜆(		tl + 𝑐(sin	(`𝑘( − 𝜆(		t)] 
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 This final case of damping is modelled 
above and generally produces the most oscillatory 
motion out of the three cases of damping, this is due 
to the sine and cosine terms within the characteristic 
equation. This can be used to model many different 
mass systems such as suspension bridges or 
pendulums. 
 
Non-Homogenous Cases 
 We have examined the homogeneous model 
(4) and found solutions for each type of damping: 
overdamped, critically damped, and underdamped. 
However, much like the homogeneous equation (1), 
this case is mostly theoretical and does not account 
for any external forces acting upon the object. Thus, 
we consider the more applicable, non-homogeneous 
equation (4) 
 

𝑥′′(𝑡) + 2𝜆𝑥′(𝑡) + 𝑘(𝑥(𝑡) 	= 	𝑐𝑜𝑠(𝑤𝑡) 
  
Since we have solved for the characteristic equation 
above when solving the homogeneous solution. We 
will now find the particular solution by letting 

 
𝑥R(𝑡) = 𝐴𝑐𝑜𝑠(𝑤𝑡) + 𝐵𝑠𝑖𝑛(𝑤𝑡) 

 
By substituting in the first and second derivatives of 
𝑥R(𝑡)	we obtain the following equation 

 
−𝑤(𝐴𝑐𝑜𝑠(𝑤𝑡) − 𝑤(𝐵𝑠𝑖𝑛(𝑤𝑡) − 2𝜆𝑤𝐴𝑠𝑖𝑛(𝑤𝑡) +

2𝜆𝑤𝐵𝑐𝑜𝑠(𝑤𝑡)+	𝑘(𝐴𝑐𝑜𝑠(𝑤𝑡) + 𝑘(𝐵𝑠𝑖𝑛(𝑤𝑡) = cos	(𝑤𝑡) 
 
 Next, we must solve for the coefficients A 
and B through the method of undetermined 
coefficients we have the following system of 
equations.  

(𝑘( − 𝑤()𝐴 + 2𝜆𝑤𝐵 = 1 
 

−2𝑤𝐴 + (𝑘( − 𝑤()𝐵 = 0 
 

The solution to the system is 𝐴 = CAWXA

(CAWXA)AfnXAeA
	 

and 𝐵 = (eX
(CAWXA)AfnXAeA

. We must note though,   
𝑘 ≠ 𝑤 ≠ 0, 𝑎𝑛𝑑	𝜆 ≠ 0. Thus, the solutions to the 
non-homogeneous equation follow the following 
cases:  
 
Case I: 𝜆( − 𝑘(> 0 (overdamped)  
𝑛K = −𝜆 +`𝜆( − 𝑘(								𝑛( = −𝜆 −`𝜆( − 𝑘( 

 
𝑥(𝑡) = 𝑐K𝑒cd: + 𝑐(𝑒cA:  

 
𝑥(𝑡) = 𝑐K𝑒(Wef`e

AWCA): + 𝑐(𝑒(WeW`e
AWCA): 

 
Case II:  𝜆( − 𝑘(= 0 (critically damped) 

𝑛K = −𝜆						𝑛( = −𝜆 
 

𝑥(𝑡) = 𝑐K𝑒We: + 𝑐(𝑡𝑒We: 
 
Case III: 𝜆( − 𝑘(< 0 (underdamped) 
𝑛K = −𝜆 + 𝑖`𝑘( − 𝜆(								𝑛( = −𝜆 − 𝑖`𝑘( − 𝜆( 

 
𝑥(𝑡) = 𝑒We:(𝑐K𝑐𝑜𝑠(`𝑘( − 𝜆(𝑡) + 𝑐(𝑠𝑖𝑛(`𝑘( − 𝜆(𝑡) 

 
The particular solution, 
 𝑥R(𝑡) =

CAWXA

(CAWXA)fnXAeA
cos(𝑤𝑡) + (op

(CAWXA)fnXAeA
sin	(𝑤𝑡)  

is used to model any external forces that are acting 
upon the mass system. When modeling the mass 
systems, we must consider external forces in order 
for the model to be accurate in the real world. These 
external forces come in many forms. When modeling 
the design of shock absorbers, we can consider speed 
bumps or suddenly breaking as an external force. 
When designing a paraplegic door, we consider the 
force exerted on the door when one opens or closes it, 
when they don’t use the button. In a more complex 
case when we examine the suspension bridge, this 
particular model does simplify the scenario since we 
are only considering one external force in a system 
which exhibits many external forces. However, if we 
choose to consider one force, this external force 
could be something such as wind velocity which can 
cause the bridge to swing at higher amplitudes.  
 We do take some liberties in just 
considering the case where our homogeneous 
equation is equal to cos	(𝑤𝑡). This is representative 
of a possible external force meaning there could be 
some error in the modeling. However, through further 
research more accurate models can be formed and 
catered to specific applications. 
 Some important points to consider are the 
type of damping that occurs in each equation. The 
case of underdamping relates most closely to objects 
under harmonic motion. This is due to the oscillatory 
nature of the sine and cosine functions. Damping 
happens due to the 𝑒We:,		which behaves as a strictly 
decreasing amplitude for the characteristic equation. 
The value gets smaller and smaller as time increases, 
which implies the maximum and minimum values of 
the characteristic equation approach 0 as t approaches 
∞. The particular solution for all cases will still be in 
motion but the damping force applied to the object is 
strong enough to keep the object close to equilibrium. 
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 Below are some images of the graphs of 
each damping case. The independent variable is the 
time and the displacement is our dependent variable.  

Figure 4. Graphical images of the non-homogeneous version of 
overdamped equation.  

Figure 5. Graphical images of the non-homogeneous version of 
critically damped equation. 

Figure 6. Graphical images of both the homogeneous and 
non-homogeneous versions of underdamped equation. 

 As the graphs show, the damping force has a 
large impact on the expression of these equations. 
When the damping constant is larger than the spring 
constant, the graph does not oscillate basically at all, 
attempting to return to its equilibrium state as quickly 
as possible. In the case of critically damped, the 
situation is very similar, except the damping constant 
and spring constant are equal to each other. This can 
be reflected in the graph, following suit after the 
overdamped equation, but it does not reach 
equilibrium as quickly. In the case of the non-
homogeneous case, the system continues to oscillate, 
but with a much lower amplitude. In our final case, 
the underdamped situation, the graph crosses the x-
axis many times, further reinforcing the notion that 
the damping constant is smaller than the spring 
constant. This causes the system to oscillate much 
more than the other two cases. As time progresses, 
the amplitudes of the graphs decrease dramatically in 
an attempt to stay at equilibrium. Overall, these 
graphs are important for a deeper understanding of 
the meaning behind each equation.  
 
Conclusion 
 In conclusion, through this paper we have 
been able to review the importance of mathematics 
and mathematical modeling. Having discussed 
differential equations and simple harmonic motion 
equations, we were able to understand the causes and 
effects of external forces and their oscillating object 
that occur in real life application such as: shock 
absorbers, guitar strings, and springs. With this paper 
students will be able to have a thorough grasp of 
these equations which creates a basis for the 
understanding of its applications. As it is seen that 
the simple harmonic equations configured through 
Hooke’s Law and Newton’s Second Law of physics. 
While the study of these ordinary differential 
equations may seem simple, their applications are 
found in other STEM fields. These fields can include, 
but are limited to: Chemistry, Engineering, and 
Physics. 
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Appendix: 

Table 1: Explanation and Importance of Terms and Coefficients. 

Coefficients/
Terms 

Meaning 

𝑥(𝑡) This term represents an object’s displacement over time. The way we can interpret this term is how far an object is 
oscillating from its equilibrium (starting) position 

𝑥′′(𝑡) The acceleration of an object over time. This would be the acceleration of each oscillation of an object. 

𝑘( The 𝑘(coefficient is used to help find the period constant for the characteristic equation of our solutions. 𝑘(represents the 
square of the period constant. The characteristic equation is the part of the solution 𝑥(𝑡) found when calculating the 
homogeneous solution. Another characteristic of 𝑘(is 𝑘( = 	 <

@
, where m is the mass and s is the spring constant. These are 

important because they help determine the coefficient in the harmonic motion equation.  

𝑤 The period constant of the function. This coefficient is used to find the period, 𝑇 = (r
X

, where T is the time in seconds for 
oscillations of some external force. A period constant, 𝑘, is also present for the object’s oscillations. We can use this 
formula for period because the oscillations create a sinusoidal wave. This coefficient is also used for finding the 
Frequency, which is 𝐹 = K

s
= X

(r
, the amount of oscillations per second. 

𝑐𝑜𝑠(𝑤𝑡) This function in (2) and (3) is representative of some sort of external force on the system that causes it to go out of 
equilibrium. This could be a driving force that causes greater oscillations of the object.  

𝑘(𝑥(𝑡) This term is said to describe a part of the restoring force, which is a force that gives rise to an object in equilibrium. This 
term is composed by the product of the square of an object’s period constant and its displacement. This term follows 
Hooke’s Law.  

2𝜆 2𝜆	is referred to as the damping force of the mass system. This force allows the mass system to return to equilibrium and 
makes it a more applicational problem rather than a theoretical equation. The coefficient can be broken down as 2𝜆 = t

@
, 

where 𝛽is the damping force and 𝑚 is the mass of the object.  

𝛽 𝛽 is considered the positive damping constant of the equation. In most cases, the 𝛽is negative because it moves in the 
opposite direction of motion. 


