

Abstract

2R,3R-Butanediol is a simple polyol with two different isomers: the meso isomer and the racemic isomer. By examining racemic 2,3-Butanediol in different solvents, we investigate its conformational preferences to determine the conformational influences present in racemic-2,3-Butanediol. 2R,3R-Butanediol serves as a model molecule to understand the conformational influence in more complex compounds such as proteins. Some conformational influences we investigate are steric bulk, intramolecular hydrogen bonding, Coulombic attraction/ repulsion, solvent effects, the polarity of conformer versus polarity of the solvent, and hyperconjugation. This project aims to understand the occurrence and effect of hyperconjugation between vicinal hydroxyl (OH) groups which are present in 2R, 3R-Butanediol. Hyperconjugation is an interaction between electrons in a sigma bond with a vicinal, coplanar anti-bonding sigma orbital which increases the stability of the system. The methodology employed is ¹H NMR and ¹³C NMR on 2R,3R-Butanediol in different solvents. Then, we simulate the experimental spectrum on gNMR to extract the J coupling values. We used the Altona equation in order to correlate the J-coupling constants dihedral angles there by determining the conformation of the compound.

Introduction

<u>Unknown:</u> F_A , F_B , F_B , $J_{12} = (F_A)(J_{12A}) + (F_B)(J_{12B}) + (F_{B'})(J_{12B'})$ $F_A + F_B + F_{B'} = 1$ $F_B = F_B$,

Analysis of Conformational Influences Within (2R, 3R)-Butanediol

Zoila M. Estrada and Michael D. Drake*

Department of Chemistry California State University, Stanislaus

Introduction(Cont'd)

Racemic-2, 3-Butanediol

$$\frac{\text{Unknown}: F_A, F_B, F_C}{J_{12}} = (F_A)(J_{12A}) + (F_B)(J_{12B}) + (F_C)(F_A + F_B + F_C) = 1$$
$$JH_1C_{obs} = (F_A)(J_{12C}) + (F_B)(J_{12HC}) + (F_B)(F_{12HC}) + (F_B$$

Methodology

¹³C NMR spectroscopy, we simulated the experimental spectra on gNMR to extract coupling constants 21.000 20.500 20.000 19.500 19.000 18.500 18.000 17.500 17.000

Figure 3: 2R, 3R-Butanediol in acetone- D_6 Molecule Assignments in gNMR for the <u>methyl</u> carbons in ¹³C NMR

Projected Methodology

We project in using the altona equation for our conformational analysis. The <u>Altona</u> equations for vicinal ${}^{3}J_{HH}$ (H-Csp³-sp³C-H) are: ${}^{3}J = p1 \cos^{2}(f) + p2 \cos(f)$ + $p3 + Sl_i (p4 + p5 cos^2(e_i f + p6 |l_i|))$

In which the sum is over the four substituents. The order of substitution around each carbon makes a difference. The direction coefficient, e_i , is +1 for S_1 and S_3 and -1 for S₂ and S₄. The "beta effect" is the electronegativity of the substituents includes and is provided as:

where C_a is the Huggin's electronegativity of the directly attached a atom, C_H is the electronegativity of hydrogen, and the sum is over the b atoms that are attached to the a atom. The substituent electronegativity for each attached group is listed under the substituent name. The coefficients have also been modified to use empirical chemical group substituent constants.

 (J_{12C})

$(F_{C})(J_{12HC})$

$l_i = (C_a - C_H) + p7 S (C_b - C_H)$

The cou spectra

Figure 6: 2R, 3R-Butanediol molecule that correspond to the coupling constants below.

					coupling constants (Hz)																		
	chemical shifts (ppm)					carbon-proton									proton-proton								
solvent	1/4	2/3	5/10	6/8	7/9	J ₁₋₅ /J ₄₋₁₀	J ₁₋₇ /J ₄₋₉	J ₁₋₉ /J ₄₋₇	J ₁₋₁₀ /J ₄₋₅	J ₁₋₆ /J ₄₋₈	J ₁₋₈ /J ₄₋₆	J ₂₋₇ /J ₃₋₉	J ₂₋₅ /J ₃₋₁₀	J ₂₋₆ /J ₃₋₈	J ₂₋₈ /J ₃₋₆	J ₂₋₉ /J ₃₋₇	J ₂₋₁₀ /J ₃₋₅	J ₅₋₇ /J ₁₀₋₉	J ₅₋₆ /J ₁₀₋₈	J ₅₋₉ /J ₁₀₋₇	J ₆₋₇ /J ₈₋₉	J ₆₋₉ /J ₈₋₇	J ₇₋₉
D20	19.422	73.146	1.129	not obs.	3.610	126.14	-1.99	1.99	0.28	not obs.	not obs.	142.85	-4.50	not obs.	not obs.	-2.29	4.49	6.45	not obs.	-0.30	not obs.	not obs.	5.96
methanol-d4	18.924	72.895	1.112	not obs.	3.511	125.60	-1.29	2.35	0.21	not obs.	not obs.	141.02	-4.40	not obs.	not obs.	-2.02	4.40	6.41	not obs.	-0.29	not obs.	not obs.	5.84
ethanol-d ₆			1.101	not obs.	3.522													6.41	not obs.	-0.32	not obs.	not obs.	5.87
isopropyl alcohol-d ₈			1.106	not obs.	3.514													6.36	not obs.	-0.31	not obs.	not obs.	6.04
t-butyl alcohol-d ₁₀			1.108	not obs.	3.496													6.35	not obs.	-0.21	not obs.	not obs.	6.39
DMSO-d ₆	18.255	70.510	0.962	4.294	3.379	125.16	-0.19	1.36	0.00	not obs.	not obs.	139.84	-4.34	not obs.	not obs.	-2.37	4.34	6.31	0.01	-0.05	4.73	-0.29	5.52
acetone-d ₆	19.086	72.272	1.073	3.538	3.437	125.34	-1,24	0.67	0.00	not obs.	not obs.	140.96	-4.47	not obs.	not obs.	-2.26	4.47	6.41	-0.03	-0.27	4.15	-0.27	6.02
acetonitrile-d ₃	19.898	73.152	1.052	2.859	3.437																		
p-dioxane-d ₈			1.038	3.212	3.341													6.15	-0.03	-0.44	4.25	-0.34	5.96

Contribution to the Study of the Gauche Effect. The Complete Structure of the Anti Rotamer of 1,2-Difluoroethane Norman C. Craig, Anthony Chen, Ki Hwan Suh, Stefan Klee, Georg C. Mellau, Brenda P. Winnewisser, and Manfred WinnewisserJ. AM.Chem.Soc.1 997; 119(20) pp 4789-4790; (communicate)

Gauche Effect in 1,2-Difluoroethane. Hyperconjugation, Bent Bonds, Steric RepulsionLionel Goodman,, Hongbing Gu, and, Vojislava PophristicThe Journal of Physical Chemistry A 2005 109 (6), 1223-122

Smith, Michael. B.; March, J. March's Advanced Organic Chemistry, 5th edition. Wiley, 2001.

•Dr. Michael D. Drake, for the opportunity, supervision, funding, and mentorship in his project.

•Mr. Yacoub, Ms. Lalimar, Ms. Avyaee for their past contributions in this project.

•Funded in part by Ronald E. McNair Post Baccalaureate Achievement Program as a research scholar.

•Mr. Jorge Camarena, Ms. Marsha Bond-Nelson, Ms. Michelle Greenwood, Mr. Jesus Cisneros, and my fellow McNair Scholars cohort for being supportive and helpful in the McNair Scholars Program.

Results

upling cou	nstants g	athered fro	om gNMR afte	er simulation of	f the experimenta
a for 2R,	3R-Buta	nediol in di	verse solven	ts through ¹ H N	MR and ¹³ C NMR.
		-			1

References

Acknowledgements

MCNAIR SCHOLARS PROGRAM UC Merced * CSU Stanislau